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A quantitative estimate is obtained for the effect of the inhomogeneity of the tem- 
perature field in the cooled screen on the loss of material stored in a cryostat. 

When carrying out thermal calculations relating to cryostats the temperature field in 
the screens cooled by the vapor of the stored substance is usually regarded as uniform (ideal 
screen). This assumption is quite acceptable if the ratio of the longitudinal conductive 
conductivity of the screen to the transverse conductivity of the thermal insulation (%8/Z)/ 

\~ --~-] ~ is large. However, the use of cryostats in cosmic (space) research imposes 

strict limitations upon their weight, at the same time demanding an increase in the storage 
time, which leads to the use of large cryostats with thin screens. Under such conditions 
the loss of the material stored in the cryostat associated with external heat inflow may dif- 
fer considerably from that calculated on the assumption of an ideal screen. In this paper 
we shall estimate these differences and determine their relationship to the constructional 
parameters of the cryostat. 

Let us consider a cryogenic vessel of cylindrical shape containing a condensed gas. The 
vessel i (Fig. i) is surrounded by two layers 2 and 3 of thermal insulation (TI) with a cooled 
screen 4 between them. The exhaust vapor of the stored substance (coolant) passes through 
tubes disposed in the screen, taking up some of the external heat inflow. It is assumed that 
the cooling tubes lie along the generators of the cylindrical screen, the vapor is distribu- 
ted uniformly between the tubes, and the number of tubes is fairly large, so that the tem- 
perature field in the screen may be regarded as axisymmetrical. We assume heat transfer be- 
tween the screen and the vapor to be ideal; the temperature of the vapor is equal to the tem- 
perature of that part of the screen with which it is in contact. 

Let us consider the steady-state process and neglect temperature variation through the 
thickness of the screen. We shall only allow for heat inflow through the lateral surface of 
the cylindrical vessel. 

Let us take an orthogonal coordinate system (x, y) in a plane passing through the axis 
of the cylinder such that the Oy axis coincides with the axis of the cylinder, while the Ox 
axis is directed along the radius (Fig. 2). Considering the smallness of 61 and 62 by com- 
parison with rl, we shall regard the surface areas of the inner vessel, the screen, and the 
outer casing as approximately equal, denoting their value F = 2~r11. 

Let us regard the TI as a continuous medium and describe heat transfer within'it by way 
of certain effective thermal conductivities, so reducing the problem of determining the ther- 
mal fluxes in the insulation to a two-dimensional heat-conduction problem. We note that for 
laminated vacuum seals (LVS) the effective thermal conductivity along the layers of insula- 
tion is 2-3 orders of magnitude greater than the effective thermal conductivity across the 
layers [2]. Assuming that %Ix, %2x, %Iy, %2y are averaged over the thickness of each layer 
of insulation, we may regard them as being constant within the corresponding layer. 
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Fig. i. Arrange- Fig. 2. 
ment of cryostat. 

i 
I r x 

Axial cross 
section of cryostat. 

The temperature field T(x, y) of the inner and outer layers of insulation, respectively, 
satisfy the two-dimensional heat-conduction equations 

0"2T a2T 
Ox 'z n~ : O, r o < x < r  1, O < y < l ,  (1) 

c)f  
c)2T O~T 
Ox ~ n~ - -0 ,  rl < x < r  2, O < y < ~ l ,  (2) 

- Oy"- 

where 

* ~2y 

We consider that the thermal fluxes in the insulation at the boundaries y = 0 and y = ! in 
the direction of the y axis are equal to zero. The temperature field of the inner layer of 
the TI then satisfies the boundary conditions 

T (ro, y) = To, T(Q, g) = T~ (y), 0 < y  < l, (3) 

OToy u=0--OToy u=l = 0 '  r ~  

and t h a t  o f  t h e  o u t e r  l a y e r ,  t h e  c o n d i t i o n s  

T(r~, y ) = T  2, T(r  I, y ) = T  l(y), 0 < y < l ,  
(4) 

OToy y=o=--OToy y=l = O' r 1 <  x < r 2. 

The temperature of the screen TI(y) 

where 

satisfies the equation 

~,A d2T1 - -  Oc v dT1 - -  ql (Y), 
dy 2 dy 

(5) 

t 1 ~  OT ~ OT 
(y) = 2nq k "--~-x ~=~,+o ] 

The quantities X:and Cp are regarded as constant. At the instant of passing into the screen 
tube, the vapor has a temperature Tinit , which is higher than To and is determined from the 
thermal balance at the lower end section of the screen: 

~A array g=0 = Gcv (~nit-- To). (6) 

Th is  e q u a t i o n  means t h a t  t h e  t h e rma l  f l u x  l e a k i n g  from t h e  end o f  t h e  s c r e e n  y = 0 i s  ab -  
s o r b e d  by the vapor before it passes into the cooling tubes. The screen temperature satis- 
fies the boundary conditions 
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T t(O) = Ttr~t, dF1 y = t =  O. (7)  
dy 

We shall call Eqs. (1)-(7) the fundamental problem. 

Before analyzing this problem let us consider a cryostat with an ideal screen. Let the 
screen temperature T, be constant, while all the remaining assumptions of the fundamental 
problem remain valid. We consider that the temperature of the vapor leaving the screen is 
the same as the screen temperature. The rate of flow of the stored substance is 

6~ = q/r, (8)  

where q = F(lxx/6t)(Tx --To) is the inflow of heat to the coolant. Let us write down the 
heat-balance equation for the screen 

GoC p (T 1 - -  To) ---- q - -  q, (9)  

where Q = F(lax/~2)(T2 --Tt) is the thermal flux through the outer packet of the TI. Intro- 
ducing the notation 

Bo = Goc, 1 
F (,.~lx ~2:r '] ' IX = ~2x~l_.. 

\ 6 t + 6~ ) 1 + ~1~6~ 

from Eq. (9) we find 
1 

T 1 - -  I 
B o +  1 

[(1 -- ~) Tz + (Bo § p,) Tol. 

Substituting Tt  into (8) we obtain an equation for determining Bo, and, of course, the flow 
rate Go: 

B o ( B o + I ) = K ,  (i0) 

where 

K = cp t r (1 - -  pt)(T 2 -  To). ( l l )  
/- 

We shall use Eq. (I0) to compare the flow rates in the case of ideal and actual screens. 

Let us return to the fundamental problem. Solving the problem (5)-(7), we obtain 

T1 (Y) = T O + 

l 
1 j" 

0 

; (y, ~) q~ (~) d~, (12) 

where 

iI, ~<y, I(Y' ~)=/exp[--~-tyOC"' _~)] 
For the boundary problems (i), (3) and (2), (4) the Fourier method gives the following rep- 
resentation of the temperature field: 

T (x, y) ----- T O -'- 

for r o ~  x ~<r,, 

T (x, y) = T 2 ~- 

[ n~tk c o s - -  
- / -  

COS - -  

kny "to ( X _ r o ) _ T  ~ x - - t o  
,31 81 

(13) 

k~y (14) To (r~--x)--T~ r2--x- 
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for r~ ~x ~ra. Here To, z~, z2... are coefficients of the Fourier cosine-series expansion 
of the function T~ (y). Making use of (12) we write these coefficients in the form 

l i 

1 1 d~] dy, 
r o = - - / - f  [To Gcp ~ I(Y, ~)ql (~) 

. I  

0 0 

l t 

2 l t ( y ,  ~ ) q t ( ~ ) d ~  c o s  - d y ,  k = 1, 2,  . . . ,  
"~k-- ~ -  . T~ " Gcs, l 

0 0 

from which, after expression qi(y) in terms of T(x, y), we obtain an infinite system of equa- 
tions for determining an infinite number of unknowns zo, z~, z2, .... The first of these 
equations is 

where 

Bx o : :  BT~ " b O o o -  ~ aifDio'ri, (15)  
i = 0  

B = Gcv ; b = uT o -:- (I - -  tt) T.4 
F kl"~ '-- F k.2_~ 

61 6, 

a o -- l, a~ = ~ - ~ - ~ )  (1 --,u) 6.:.,_ cth 

(for i =  1, 2 . . . .  ), 

l l 

f(3 ) 1 ~) i.-t~ d~ dy (for f =  O, 1, 2 . . . .  ). ~ i o =  - 7 . , . ,  I (y, cos l 
0 0 

(16) 

Each of the coefficients ~io is expressed in terms of the complex 

p _  Gcv I 
XA 

(17)  

[for example, r = x12 + (I/P) -- (lIP 2) + (llPa)exp(--P)]. Let us express this complex in 
the form of a product P = sB, where ~ = (l=/X~)[(X1x/dl) + (Xax/~a)] is the parameter defin- 
ing the deviation from ideal conditions (imperfection parameter). Estimating e for I = i m, 
~I = ~a = 0.05 m, ~ = 0.001 m, X~x = 10-5 W/m-deg, X2x = i0-~ W/m-deg, X = 50 W/m.deg, we 
obtain r ~ 0.044. We note that c § 0 as ~X increases. In order to obtain the unknown de- 
pendence of the rate of flow G of the stored substance on the parameters X and ~ let us con- 
sider the relationships between the dimensionless complexes B and e which include G and ~X, 
respectively (an analogous method was used in [i]). 

Let us determine the heat inflow q through the inner packet of insulation to the vessel: 

Then 

! 
: i  

i 2.~rlk~ ~ 0T 
I.<=,.,_o 

dy : F :~I~ (To - -  To). 

G = F  ;"i~ (% --To)  I , (18)  

whence 
r 

B - - zo (B ,  e ) - - T o ,  where B = B ( e ) .  (19)  
Cp~ 

Let r § 0. Denoting B(0) by Bo and zo(Bo, 0) by To ~ and making use of (19), (15), and (17), 
we obtain an equation for determining Bo coinciding with (I0) for an ideal screen. 

Now let r # 0. After differentiating Eq. (15) with respect to e and making e tend to- 
ward zero, we obtain 

[,oo, , r/o.-,) Boxo ~ + Bo /-4-g-~ t oB  o [ 0% '~ -3 ( aT~ ] 1 = BoTo b {qOoo)oB o - - , o  o (m~o)oB o - -  (moo)o L \ OB o \ ae ) " 
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Fig. 3. Dependence of B and 
Be on K, respectively, for 
non-heat-conducting and ideal 
screens. The points M and N 
show the values of B and Be 
for a helium cryostat: I) 
B~ + Be = K; 2) (24). 

From (19) and (17) we have 

OB /o -7 \ ~-e :o Cp ' 

I 
6 ' (Ooo)o = 1. 

r I 
To, 

cp I~ 

! 
We now determine Be from Eq. (20): 

1 B o [ _ B o ~ ( l _ ~ ) c _ _ . L  p (T~- -To) ]  
6 r 

B~ ~ 1  ' 
= - - - -  2Be=- 

' --t/6B~/(2Bo + i) whence allowing for (i0) Be = 

From the Taylor formula B -- Be = B~ + 0(E) we obtain the unknown dependence of B on e 

I 
6 B] 

B--Bo= 2Bo ~ 1 8@0(8 ) .  (21) 

This relationship is suitable for small values of the imperfection parameter e such as occur 
in practical situations (remember the foregoing value of e = 0.044). Using the earlier ini- 
tial data, for a cryostat containing helium (Cp/r = 0.25) we find that the difference in 
rates of flow determined by Eq. (21) for arrangements with a constant and variable screen 
temperature is approximately 0.6%. Since the right-hand side of Eq. (21) is negative, we 
have G < Go, i.e., the flow of the stored substance is greater in the case of an ideal screen 
than in the practical case. This difference is greater, the greater the value of the param- 
eter g. 

It is thus interesting to consider the arrangement of a cryostat with a non-heat-con- 
ducting screen (c + =). We shall also put %ty = %=y = 0 (no thermal conductivity along the 
layers of insulation). All the remaining assumptions of the fundamental problem are retained. 
Under these conditions the temperature of the screen Tt satisfies the equation 

where 

OCp dT1 (22)  . = q,  (Y) ,  
dy 

T2 -- T1 (y) 
ql (Y) = 2nr~ ~,~ 62 

and the boundary condition 

T~ (0) = To. 

Solving the problem (22)-(23, we obtain 

(y!-- To ] 
61 J' 

(23) 
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A f t e r  d e t e r m i n i n g  t h e  F o u r i e r  c o e f f i c i e n t  

l 

~ ' o = - -  T l ( y ) d y = b  " B ( T o - - b  ) 1 - - e x p  -- 
l . 

0 

we use Eq. (18) to find the rate of flow 

F I __ To _ _  b B ( T o - - b )  l - - e x p  - -  . 

Using (ii) and (16) we obtain an equation for determining the complex B 

B 
(24) 

We note that the right-hand sides of Eqs. (i0) and (24) are equal. We see from Fig. 3 that 
B < Bo. The relative change in the rate of flow on passing from the ideal to the non-heat- 
conducting screen (original data as before) amounts to 20% for helium. 

Thus the reduction in rate of flow on passing from an ideal screen to a real one (hav- 
ing a finite thermal conductivity) is fairly slight. However, the transition from an ideal 
to a non-heat-conducting screen (in the absence of heat flows along the insulation) yields a 
considerable reduction in flow rate, which indicates the undesirability of using non-heat- 
conducting cooled screens in cryostats. 

NOTATION 

TI, thermal insulation; LVS, laminated vacuum seal; ro, r~, r=, radii of the cryogenic 
vessel, screen, and outer casing; ~i, 62, thicknesses of the inner and outer packets of in- 
sulation; ~, thickness of screen; ~, length of screen; F~ surface area of screen; A, area of 
screen cross section perpendicular to the axis of the vessel; %:x, %ax, effective thermal 
conductivities in a direction perpendicular to the layers of insulation for the inner and 
outer packets of the LVS; %:y, %ay, effective thermal conductivities along the layers for 
the inner and outer packets of the LVS; n~ = %~y/%~x; n 2a = %2y/%ax; %, thermal conductivity 
of the screen material; Cp, specific heat of the vapor of the stored substance at constant 
pressure; r, latent heat of vaporization of the cryogenic substance; To, temperature inside 
the cryogenic vessel; Ta, ambient temperature; T(x, y), temperature field in the insulation; 
TI(y), screen temperature; q(y), Q(y), q, Q, thermal flows through the inner and outer packets 
of insulation, value referred to unit length of the generator and total value, respectively; 
q~ = Q - q; Go, flow rate of stored substance for a cryostat with an ideal screen; G, flow 
rate of substance for a cryostat with a nonuniform temperature field in the screen; s = (~2/ 
%~)[(%ix/6t) + (%2x/~=)], imperfection parameter; Bo = Gocp/[F(%~x/~) + F(%ax/~a)], B = Gcp/ 
[F(%~x/~) + F(%ax/~=)], ~ = i/[i + (%ax~i/%~x~)], K = (Cp/r)~(l -- ~)(T2 -- To), b = ~To + 
(I -- ~)T2, dimensionless complexes. 
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